
Reconstructing Gene Expression from Clinical and Genetic Panel 
Data for Predictions of Tumor Microenvironment Features & 
Response to Immune Checkpoint Inhibitor Therapy
Felicia Kuperwaser, Sunil Kumar, Dillon Tracy, Jeff Sherman, Andrey Chursov, Maayan Baron and Emily Vucic
Zephyr AI: 1800 Tysons Blvd Suite 901, McLean, VA, 22102 | https://www.zephyrai.bio

Background: The development of immune checkpoint inhibitor (ICI) therapy has fundamentally changed the 
landscape of cancer treatment. While ICIs have exhibited remarkable efficacy across diverse cancer types, the 
majority of cancer patients do not respond to these therapies [1]. Tools to better identify patients who would 
benefit from ICI therapy are urgently needed to facilitate personalized care. Models for ICI response that 
incorporate tumor microenvironment (TME) features in addition to molecular data have demonstrated 
improved predictive power of patient response to therapy [2, 3]. These features reflect the coordinated activity 
of multiple cell types and therefore are best captured by mRNA expression. Transcriptional profiles are not, 
however, readily assayed in clinical settings. Extracting TME features from molecular data already collected in 
clinical settings provides an opportunity to bridge the gap between predictive models that rely on these 
features and their translation into clinical practice, as well as enhance the clinical utility of real-world datasets. 

Methods: We developed a machine learning (ML) model to reconstruct tumor gene expression profiles using 
genetic information from clinically available commercial NGS panels and embeddings [4] generated by a 
language model (Fig 1). This model was trained on publicly available data including ~8000 tumors representing 
32 cancer types [5] and validated in additional heterogeneous patient cohorts.

While RWD may be limited in molecular characterizations, they typically present comprehensive clinical 
characterizations, including longitudinally collected NGS data and patient outcomes. Our flexible analytic 
framework for reconstructing gene expression profiles from clinicogenomics data substantially augments 
the clinical utility and value of data acquired in real-world settings. The expansion of data capabilities to 
encompass TME features opens exciting new avenues for discovery across numerous applications.

Figure 4 |Reconstructed TME features provide comprehensive tumor characterization in GENIE data. A,B) Heatmap of scaled reconstructed TME 
features across the most abundant cancer subtypes present in the AACR Project GENIE dataset stratified by TMB (A) and sex (B). C) tSNE visualization of 
reconstructed TME features in GENIE LUAD samples colored by primary or metastatic status (top left). PCA visualization of GENIE LUAD metastatic samples 
colored by sex (top middle) and by expression of PDL1 (top right). D) Heatmap of correlations between reconstructed features in GENIE LUAD metastatic samples. 
E) Boxplots of selected feature scores between samples that have high or low PC 1 scores. BLCA: Bladder cancer; BRCA: Breast cancer; CCRCC: Clear cell renal cell 
carcinoma; COADREAD: Colorectal adenocarcinoma; ESCA: Esophageal carcinoma; GB: Gall bladder cancer; GBM: Glioblastoma multiforme; GIST: Gastrointestinal stromal 
tumor; HGSOC: High-grade serous ovarian cancer; IDC: Invasive ductal carcinoma; ILC: Invasive lobular carcinoma; LUAD: Lung adenocarcinoma; LUSC: Lung squamous 
cell carcinoma; MEL: Melanoma; NSCLC: Non-small cell lung cancer; PAAD: Pancreatic Ductal Adenocarcinoma; PRAD: Prostate adenocarcinoma; READ: Rectum 
adenocarcinoma; SKCM: Skin cutaneous melanoma; THPA: Papillary thyroid cancer; UEC: Uterine endometrioid carcinoma.

Figure 3 | Reconstructed TME features explain clinical features and survival differences in real world data. A) tSNE on TCGA true expression (top left, 
446 genes) and true TME features (top right), reconstructed expression (bottom left, 446 genes) and reconstructed TME features (bottom right) colored by cancer 
subtype. B) tSNE on samples curated from our real world data cohort on reconstructed expression (top, 446 genes) and reconstructed TME features (bottom) 
colored by cancer subtype (left), primary versus metastatic status (middle) and sex (right). C) Boxplots of predicted fractions of T cells CD4 memory activated (left) 
and T cells regulatory Tregs (right) in LUSC samples from TCGA (top) and our curated RWD cohort (bottom) stratified by tumor mutational burden (x axis).   Central 
line of the boxplot shows the median, boxes represent the IQR, and whiskers represent the 5th and 95th percentiles. D) Scatterplot of reconstructed wound healing 
versus resistance up resconstructed scores in melanoma samples from curated RWD cohort (slope = 0.3; p value < 10-6). E) CoxPH analysis of reconstructed  
signatures in SKCM samples from curated RWD cohort. F) PCA on BLCA samples from curated RWD cohort on reconstructed TME features colored by B cells naive 
(left), Plasma cell (middle) and resistance up (right) scores (top). Boxplots of scores for each features stratified by OS status (bottom). Central line of the boxplot 
shows the median, boxes represent the IQR, and whiskers represent the 5th and 95th percentiles (middle). G) CoxPH analysis of features in bladder cohort from F. 
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Results: Gene expression reconstruction using this model was highly correlated with true expression (mean 
correlation per sample = 0.927, [0.9263 - 0.9284, 95% CI, N=1184]). We applied these data to the prediction of 
a set of TME signatures, previously associated with response to ICI therapy [6, 7, 8] and that describe TME 
composition and phenotypes (mean correlation per sample = 0.804, [0.8018, 0.8070, 95% CI, N=7555]). We 
demonstrate how reconstructed TME signatures are predictive of survival and provide interpretable biological 
insight into differences in patient outcomes across these cohorts.

Figure 1 | Gene expression reconstruction from real world data. Clinical features and genetic panels are used to reconstruct expression of a selected set 
of ~450 genes and 32 tumor microenvironment (TME) signatures predictive of response to immune checkpoint inhibitor (ICI) therapy.

We trained a model using DepMap clinical and genomic data to reconstruct gene expression for a set of ~450 
genes selected for utility in reconstructing true TME signatures. Our method achieved higher correlation with 
true expression for most genes compared to other methods (Fig 2A-B). A subsequent model trained on TCGA 
data, showed consistent reconstruction across all cancer subtypes (Fig 2C). Using this reconstructed 
expression, we predicted a set of TME features and achieved comparable results to predictions from true 
expression (Fig 2D). Despite varying feature correlations, our method consistently predicted feature scores 
similarly from reconstructed or true expression (Fig 2E).

We next examined patterns across cancer subtypes in TCGA data and a curated real-world dataset with 
ICI-related patient outcomes. Visualization using tSNE based on reconstructed expression and TCGA features 
captured relevant clinical information, supporting the reliability of reconstructed data for clinical analysis (Fig 
3A, B). We successfully recovered known relationships, such as the link between tumor mutational burden and 
T cell subtypes in lung squamous cell carcinoma (LUSC, Fig 3C) [9], and the correlation between wound healing 
and resistance signatures in melanoma (MEL, Fig 3D) [10]. Reconstructed features also explained survival 
differences. In skin cutaneous melanoma (SKCM) samples, high expression of immunoregulatory signatures 
correlated with worse outcomes, as previously reported (Fig 3E) [6]. PCA of bladder urothelial carcinoma (BLCA) 
samples revealed B cell differentiation as the primary source of variance (PC1), likely reflecting the cell of origin 
in this cancer type (Fig 3F, left and middle), whereas PC2 captured differences in resistance (Fig 3F, right). An 
inverse relationship was observed between presence of B cells, a lower 'resistance up' signature and survival 
(Fig 3F bottom and 3G), consistent with prior findings [11]. 

Zephyr’s ML method reconstructs expression and TME features with high accuracy

Zephyr AI model predicts TME features associated with clinical features

Reconstructed TME features provide comprehensive tumor characterization for a 
large publicly available clinicogenomics cohort from NGS gene panel data alone

Figure 2 |Zephyr AI methods reconstruct expression and TME features with high accuracy. A) Distributions of correlation per sample (left, mean 
correlation = 0.927, [0.9263 - 0.9284, 95% CI, N=1184]) and per gene (right, mean correlation = 0.672, [0.6660 - 0.6778, 95% CI, N=400]) of reconstructed 
expression of selected genes in DepMap data. B) Zephyr AI method correlation per gene compared to DNA-based (left) and Core Omics (right) reconstruction 
approaches. C) Correlation per sample by cancer subtype of reconstructed TCGA expression.   Central band of the boxplot shows the median, boxes represent 
the IQR, and  whiskers represent the 5th and 95th percentiles. D) Correlation per sample of reconstructed TME features from mutations (mean correlation = 
0.528, [0.5244, 0.5308, 95% CI, N=7555]), reconstructed expression (mean correlation = 0.804, [0.8018, 0.8070, 95% CI, N=7555) and true expression (mean 
correlation = 0.942, [0.9418, 0.9432, 95% CI, N=7555]) (top). Correlation per feature of reconstructed TME features from mutations, reconstructed expression 
and true expression (top). Central band of the boxplot shows the median, boxes represent the IQR, and whiskers represent the 5th and 95th percentiles. 
Features labels are colored by regulatory (light blue) or inflammatory (pink) summary signatures, total tumor fractions (lavender), or innate (green) or adaptive 
(dark blue) cell type fractions (bottom). E) Correlation per feature derived from reconstructed versus true expression. Features are colored as in D (top). 

Reconstructing TME features from NGS panel data enhances clinical utility of RWD
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AACR Project GENIE is a large-scale RWD oncology clinicogenomics data-sharing initiative spearheaded by the 
American Association of Cancer Research (AACR) [11]. With data spanning ~180,000 tumor samples (~160,000 
patients), it is an invaluable resource for the scientific community, fostering exploration into cancer biology, 
biomarkers, and therapeutic targets. We reconstructed TME features for 22 cancer types from this cohort. 

Preliminary analysis revealed enrichment of TME feature scores based on TMB and sex across various cancer 
types (Fig 4A, B). Within cancer types, several interesting patterns emerged. In LUAD for example, TME features 
were strikingly distinct between primary and metastatic tumors (Fig 4C, left). PCA on metastatic lung 
adenocarcinoma (LUAD) tumors alone revealed two distinct clusters, one comprising only males (Fig 4C, middle), 
which also showed high expression of reconstructed PDL1 (Fig 4C, right). Correlation between feature scores and 
PC1 scores revealed further feature enrichments (Fig 4D). For example, patients with high PC1 scores, primarily 
males with elevated PDL1 expression, showed enrichment in lymphocyte infiltration, suggesting potential 
immunotherapy responsiveness (Fig 4D, left). In contrast, patients with low PC1 scores exhibited reduced 
inflammatory markers and cell subtypes, alongside resistance signatures (Fig 4D, middle) and innate immune cell 
infiltration (Fig 4D, right). Combining innate immune cell-directed therapy with T cell targeted therapy may 
enhance the inflammatory environment and improve T cell therapy responses in these patients.
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