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The interconnectivity of factors contributing to adverse 
outcomes (AOs) in type 2 diabetes (T2D) makes it difficult to 
predict when complications will occur for individual patients. 
While population stratification of T2D AOs has been 
studied1,2,5,6,7,8, predicting when a specific patient will 
experience explicit outcomes and deploying person-specific 
interventions to address those outcomes have not been 
integrated into clinical workflows.

Objective
Zephyr AI™ and MedStar Health® have partnered to develop 
and deploy interpretable AI/ML models into the workflow.

Patient AO predictions for 0-5 years are returned as 
probability measures with individualized contributing 
factors to assist clinicians in the delay or prevention 
of AOs.

Data

Most models compare favorably to metrics published in the 
space14, 18, 19, 20 and show an average AUC of 0.85, 
concordance indices > 0.76, and Brier scores < 0.07 across 
the AOs. 

Multiple types of survival models (RSF, AFT, MTLR, PLSR, 
CCA) are trained for each AO from first interaction to the 
date of T2D diagnosis plus a fixed observation period (6 
or 12 months). We have generally obtained the best 
performance, in metrics and scalability, from MTLR.
  

Results

Backtesting: the 
proportion of 
patients 
experiencing a 
given adverse 
outcome 
correlates with 
the predicted risk.
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Evaluating predictive capability, generalizability and clinical utility of Zephyr models on 300K T2D MedStar patients is underway

Empowering Clinicians to Manage Chronic-comorbid Conditions by 
Predicting Adverse Outcomes with Transparent AI at the Point of Care

AO Lit. AUC Zephyr AUC
ESKD 0.815-0.846 0.80-0.93

DFU 0.867-0.888 0.78-0.86

LEA 0.729 -0.8410 0.83-0.88

Methods

Stratification of a homogenous cohort with 
explainability is achieved using SHapley Additive 
exPlanations (SHAP)11 and aids in establishing 
model trust. 

A SHAP “waterfall plot” shows the 10 most influential 
features for a given patient. SHAP values are additive, 
their sum gives the individual risk vs. population 
prevalence of an adverse outcome within in the 
prediction window. Feature-level contributions to risk 
are critical to clinicians’ interpretation of models12,13 and 
prioritization of interventions.  

Prioritized* AOs: 

*considered clinically relevant and actionable

The training set comprises ~400k patients with ~5 years of 
depth. Another ~100k patients are held out for testing.

We compute ~5k features and use the highest quality 
~1k features in training. Feature provenance is tracked 
to enable smart imputation when limited patient data 
is available.

● End Stage Chronic Kidney Disease (ESKD)-CKD 4, CKD 5, and Dialysis
● Acute and Chronic Diabetic foot ulcer (DFU) 
● Lower Extremity Amputation (LEA)

Matrix reconstruction 
techniques allow use 
of partial patient 
data at a modest cost 
in AUC.

https://doi.org/10.1002/bjs.11160
https://doi.org/10.1177/19322968221142899
https://doi.org/10.1093/jamiaopen/ooac063

