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Abstract #7373

SUMMARY Modeling Mutational Profiles in TCGA Cohorts with Bayesian Networks Characterizing Drug Response Using Generated Patient Mutational Data
e We introduce a generative Bayesian network method for synthesizing annotated For any particular cohort (for instance, TCGA LUSC patients), there is a known distribution of One application of this type of generative model is in downstream modeling and biomarker
patient feature profiles using a constrained set of genes from limited real-world observed features (i.e. NGS panel results) and an unknown joint distribution of unobserved discovery. Using an internal drug response prediction model we found variations in augmented
molecular data, looking specifically at somatic mutations and lung and breast cancer. features (mutation probabilities over all genes). We model this joint distribution by learning a profiles typically induced small perturbations to modeled drug response (Fig. 4). Interestingly, when
e This approach addresses challenges posed by widely clinically available, yet molecularly Bayesian network over a broad feature set for . outputs were discordant between limited and expanded actual gene panel inputs, synthetic data
sparse tumor data, enhancing the value of established real-world clinicogenomic which some training data is available, and CORNLA ﬂ;; @ were more concordant with results from expanded panels (Fig. 5). Moreover, synthetic data enables
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whose “out-of-panel” components are drawn from the joint probability distribution of all mutations in the training population.
Upper left: 250 757-gene profiles generated from a 190-gene panel with 5 mutations. The blue area (the panel result) is fixed
and the yellow area is generated or synthesized; red dots indicate mutations.
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scores on the per-patient averages. Holdout patient ground truth is shown in green. B) Mutation coincidences in the TCGA LUAD
cohort, for 9 genes of interest in NSCLC.
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