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● We introduce a generative Bayesian network method for synthesizing annotated 
patient feature profiles using a constrained set of genes from limited real-world 
molecular data, looking specifically at somatic mutations and lung and breast cancer. 

● This approach addresses challenges posed by widely clinically available, yet molecularly 
sparse tumor data, enhancing the value of established real-world clinicogenomic 
datasets and potentially advancing precision oncology through personalized treatment 
guidance, enriched data analysis and novel  biomarker identification. 

SUMMARY

BACKGROUND
● Molecular data from patient tumors in real-world settings are sparse, typically limited 

to profiles of a few hundred genes. 

● This issue of molecular sparsity is exacerbated by earlier assays, resulting in real-world 
clinicogenomic databases that are very rich in longitudinal clinical follow-up, but 
restricted in their applicability to research pursuits such as biomarker discovery.

● The number of genes on commercial NGS panels continues to increase over time, 
reflecting the discovery of more biomarkers in cancer research and the translation of 
these discoveries into clinical practice.

● We hypothesized that by modeling the joint distribution of both observed and 
unobserved molecular features in a large tumor cohort using a Bayesian network and 
Gibbs sampling, we could effectively infer and synthesize comprehensive mutational 
profiles for tumors with otherwise limited data from commercial NGS panels (Fig. 1).
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Figure 1. Generative Bayesian network approach to augment tumor mutational profiles. A directed graph is inferred on 
a corpus of molecularly rich training data (e.g., TCGA mutational profiles). State probabilities for the graph are learned, and 
Gibbs sampling is used to extract multiple likely graph states for each patient of interest. The output is a collection of profiles 
whose “out-of-panel” components are drawn from the joint probability distribution of all mutations in the training population. 
Upper left: 250 757-gene profiles generated from a 190-gene panel with 5 mutations. The blue area (the panel result) is fixed 
and the yellow area is generated or synthesized; red dots indicate mutations.

Modeling Mutational Profiles in TCGA Cohorts with Bayesian Networks
For any particular cohort (for instance, TCGA LUSC patients), there is a known distribution of 
observed features (i.e. NGS panel results) and an unknown joint distribution of unobserved 
features (mutation probabilities over all genes). We model this joint distribution by learning a

Figure 2. A directed graph inferred from 
TCGA LUSC mutations was generated using 
findr [1]. Only highly connected nodes 
(above degree 15) shown. Nodes are limited 
to 12 outgoing and 4 incoming links. The 
complete graph has 689 genes and 2644 
edges. The fitted network model tabulates 
or predicts (depending on size) the 
mutation probability for each node, 
conditioned on its parents’ states. The 
model’s conditional probability table for the 
SOX10 vertex is shown.

Validation of Model-Generated Mutation Profiles in Lung Cancer
By way of validation, we examined the marginal mutation rates of profiles generated by the 
model to see how well they recapitulate rates seen in the training data. Results show close 
agreement across a decade of range in the mutation rate (Fig. 3A). We further compared 
mutation coincidence rates for nine lung cancer-pertinent genes with rich coincidence data [9], 
again showing agreement between training ground truth and the generated profiles, with the 
possible exception of EGFR-TP53 in LUAD (Fig. 3A).

Figure 4. Consistency in drug sensitivity predictions using real and synthesized 
mutational profiles for fulvestrant in a BRCA patient. Fulvestrant drug response 
prediction scores were generated for a single BRCA patient using 5000 profiles (metapanel, 
757g) generated from an actual 190-gene set. Predictive performance for this drug response 
model was assessed using actual data as input from a 190-gene (panel, 190g) and 757-gene 
panel (envelope, 757g). The outcome demonstrates high consistency between real and 
synthesized profiles (higher AUC = increased resistance). 

Characterizing Drug Response Using Generated Patient Mutational Data 
One application of this type of generative model is in downstream modeling and biomarker 
discovery. Using an internal drug response prediction model we found variations in augmented 
profiles typically induced small perturbations to modeled drug response (Fig. 4). Interestingly, when 
outputs were discordant between limited and expanded actual gene panel inputs, synthetic data 
were more concordant with results from expanded panels (Fig. 5). Moreover, synthetic data enables

Figure 5. Tamoxifen response predictions between 
synthetic and expanded gene panels are 
concordant. Tamoxifen response scores were obtained 
for an additional BRCA patient using a synthetic 
757-gene (metapanel, 757g) generated from an actual 
190 gene mutation panel result for this patient. 
Predictions were discordant between the panel (panel, 
190g; predicted sensitive) and the generated profile 
(envelope, 757g; predicted resistant), highlighting the 
impact in predictive power of larger gene panels. 
Remarkably, the insensitive peak in the predicted 
response distribution (metapanel, 757g) closely 
matched the actual 757g panel, demonstrating the 
robustness of our method. Solid line demarcates the 
sensitive/insensitive boundary for the binary classifier 
whose feature importance appears in the SHAP analysis 
(right). Positive and red SHAP values indicate REL 
mutations are linked to tamoxifen sensitivity.
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Figure 3. Analysis of Training and Predicted Mutation Probabilities and Coincidences in TCGA Lung Cancer Cohorts. A) 
Marginal mutation probabilities by gene in the TCGA LUSC cohort, for the 200 most frequently mutated genes in the generated 
profiles. Training rates, shown in orange, are averages over patients in the training split (80%). Holdout rates, shown in blue, are 
averages of averages of profiles generated over patients (5k per patient) in the holdout split (20%). Confidence limits are Wilson 
scores on the per-patient averages. Holdout patient ground truth is shown in green. B) Mutation coincidences in the TCGA LUAD 
cohort, for 9 genes of interest in NSCLC.
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Bayesian network over a broad feature set for 
which some training data is available, and 
generate feature profiles by applying Gibbs 
sampling to the learned network. In effect, a fitted 
Bayesian network allows sampling random 
variates from the joint distribution of all 
mutational profiles (Fig. 2).

parent child coeff

FLI1 SOX10 0.645

IRF2 SOX10 0.779

NFE2 SOX10 0.473

PTPRO SOX10     0.779

Mutation coincidences in TCGA LUAD, 
training profiles, 785 patients 
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Marginal mutation probabilities by gene, TCGA LUSC cohort

exploration of numerous genomic possibilities simultaneously, 
supporting identification of off-panel genes that may significantly 
influence sensitivity, thus aiding biomarker discovery.

● The Bayesian network method for synthesizing patient genetic profiles tackles the issue of limited 
molecular data in real-world clinical settings, significantly enhancing real-world clinicogenomic 
datasets that typically lack molecular detail but have extensive clinical follow-up.

● This augmented data opens avenues for downstream analysis, supports the discovery of potential 
biomarkers for tumor classification, prognosis, or therapy response, and may improve diagnostic 
tool accuracy by including a wider array of genetic information.

● Additionally, these enhanced datasets hold the potential to facilitate development of machine 
learning models, utilizing vast amounts of real-world data to address diverse questions that 
support the advancement of precision medicine.


