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BACKGROUND Zephyr Al Machine Learning (ML) method reconstructs transcriptomes with high accuracy Deriving PAM50 subtyping and other clinical features from reconstructed breast cancer
. o . . . . . . across multiple tumor types expression profiles is comparable to real expression
e Patient datasets with clinical and molecular information are ideal for studying tumor biology and developing | | | | o
robust machine learning (ML) models for predicting outcome and treatment response. These data however rarely Our expression reconstruction model, trained on the DepMap dataset, used 720 cell lines for training and 164 for testing. We To assess the clinical utility of reconstructed expression, we applied our
exist in real-world settings or in sufficient quantities within research contexts. compared the model's reconstructed expression profiles (18,969 genes) to actual expression in 26 cancer subtypes (Fig. 2A). method to 564 breast cancer samples (Fig. 4A), using only those features A :
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e Large publicly available datasets like The Cancer Genome Atlas (TCGA), which provide multi-omic profiles for A B reus .. Including clinical features significantly improved | specified in Fig 1. We compared the predictive efficacy of reconstructed d clinical eatures B . outcome |
diverse cancer types, have greatly facilitated development of novel therapies and personalized medicines. ’g”’(’ = % = efocts 102 accuracy at sample and gene levels (Fig. 2B, P<107°, expression to true expression and mutations for four clinical § '
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e Real-world clinicogenomics cohorts, such as the AACR Project GENIE, on the other hand are typically very rich in 5 : °, B true expression, especially for highly variable genes (Fig. | outperformed DNA alterations alone in all tasks (Fig. 4B) 0.75 o
clinical annotations, including treatment regimens and outcomes measures. These data, however, are sparsely £ oss Ons — = Jr 2C, left panel, r=0.66, P<10%"), suggesting variability . . o Q
annotated for patient tumor molecular profiles, rarely exceeding ~100's of genes profiled. § |mPimay foo| | 50 : ' ' ] . Figure 4 | Evaluating Clinical Utility of Zephyr Al's Reconstructed Expression < 0-30
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profiles would be useful for a variety of clinically meaningful downstream applications. C - - ccuracy in Depliap Lell Lines by Lancer Type ancd Impact o reconstructed expression (lavender) or mutations alone (maroon).
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METHODS = [shown on both train and test data due to small sample size] B) | paconstructed expression profiles were generated for 272 colon adenocarcinoma tumors. OncotypeDx signatures® were derived
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We developed an ML model (Mut2Ex) to reconstruct tumor gene expression profiles using genetic information s 04 reconstructed expression (left, mean r = 0.1056 [0.0946 - 0.1167, using genes from either real RNA sequencing or reconstructed profiles. Overall survival (OS) was compared between patients with
available on commercial next generation sequencing panels using a regression-adapted Principle Label Space Sy b 95% Cl, N=164] without clinical features and mean r = 0.9342, high and low risk scores (RS) from real expression (Fig. 5A) and reconstructed expression (Fig. 5B). Real expression-based
c : _ 0 — i ini : : : : : : :
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generated by a language model (Fig. 1). Mut2Ex was trained on ~1200 DepMap cell lines across 26 cancer types to - ! ‘ ' ' clinical features and mean r = 0.3651 [0.3639 - 0.3663, 95% ClI] 27-month increase. While a high correlation (r = 0.65, p-value < 103° was observed between risk scores from real and
reconstruct whole transcriptome mRNA expression profiles. These profiles were generated for ~10,000 tumors i r= 057 (P < 10%) e r=007 (P<10%)  With clinical features) of reconstructed expression of N= 18,969 | reconstructed expression (Fig. 5C), discrepancies may contribute to improved survival outcomes in some patients. Indeed, gene
from TCGA and ~180,000 tumors from AACR Project GENIE and applied to a variety of clinical tasks. Standard Deviation Mean Expression genes. C) Boxplots of correlation per gene binned by standard | et enrichment analysis revealed that high RS from reconstructed expression is associated with STK33 and BMI pathways,
variation (left) and mean of the true gene expression (right). , L , , . . )
whereas high RS from real expression is linked to fatty acid metabolism and AKT/MTOR signaling (Fig. 5D).
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