
Our expression reconstruction model, trained on the DepMap dataset, used 720 cell lines for training and 164 for testing. We 
compared the model's reconstructed expression profiles (18,969 genes) to actual expression in 26 cancer subtypes (Fig. 2A).
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● Patient datasets with clinical and molecular information are ideal for studying tumor biology and developing 
robust machine learning (ML) models for predicting outcome and treatment response. These data however rarely 
exist in real-world settings or in sufficient quantities within research contexts. 

● Large publicly available datasets like The Cancer Genome Atlas (TCGA), which provide multi-omic profiles for 
diverse cancer types, have greatly facilitated development of novel therapies and personalized medicines. 
However, the absence of patient outcome data tied to treatment limits the applicability of these data for 
understanding and modeling treatment response. 

● Real-world clinicogenomics cohorts, such as the AACR Project GENIE, on the other hand are typically very rich in 
clinical annotations, including treatment regimens and outcomes measures. These data, however, are sparsely 
annotated for patient tumor molecular profiles, rarely exceeding ~100’s of genes profiled. 

● We hypothesized that it would be possible to reconstruct latent tumor mRNA representations from limited 
genomic and clinical data available in real-world clinicogenomic cohorts, and that these reconstructed expression 
profiles would be useful for a variety of clinically meaningful downstream applications.

BACKGROUND

METHODS
We developed an ML model (Mut2Ex) to reconstruct tumor gene expression profiles using genetic information 
available on commercial next generation sequencing panels using a regression-adapted Principle Label Space 
Transformation (PLST), along with embeddings from minimal clinical information (OncoTree code, sex and stage) 
generated by a language model (Fig. 1). Mut2Ex was trained on ~1200 DepMap cell lines across 26 cancer types to 
reconstruct whole transcriptome mRNA expression profiles. These profiles were generated for ~10,000 tumors 
from TCGA and ~180,000 tumors from AACR Project GENIE and applied to a variety of clinical tasks.

Zephyr AI Machine Learning (ML) method reconstructs transcriptomes with high accuracy 
across multiple tumor types
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RESULTS
● Reconstructed mRNA expression by Mut2Ex was highly correlated with true expression in cell lines (r = 0.9342,  

[0.9328-0.9357, 95% CI, N=164]). Compared to true expression, reconstructed profiles recapitulate sub-clusters 
within cancer types, PAM50 subtyping in breast tumors, survival signatures in colorectal tumors and multiple 
oncogenic signatures in a pan-cancer manner. 

● Analysis of reconstructed expression for AACR Project GENIE tumors revealed expected enrichment of known 
driver genes within expression subtypes and enrichment of oncogenic signatures associated with distinct clinical 
outcomes in a cancer type specific manner.

Figure 2 | Evaluation of Reconstructed Gene Expression 
Accuracy in DepMap Cell Lines by Cancer Type and Impact of 
Clinical Features. A) Distributions of correlation per sample of 
reconstructed expression of N=18,969 genes in Depmap cell 
lines per cancer type, split by primary and metastatic cell lines. 
[shown on both train and test data due to small sample size] B) 
Boxplots of correlation per sample between real and 
reconstructed expression (left, mean r = 0.1056 [0.0946 - 0.1167, 
95% CI, N=164] without clinical features and mean r = 0.9342,  
[0.9328-0.9357, 95% CI, N=164] with clinical features) and per 
gene (right, mean r = 0.2073 [0.2064 - 02081, 95% CI] without 
clinical features and mean r = 0.3651 [0.3639 - 0.3663, 95% CI] 
with clinical features) of reconstructed expression of N= 18,969 
genes. C) Boxplots of correlation per gene binned by standard 
variation (left) and mean of the true gene expression (right).

Figure 3 | Consistent Genomic Profiling and 
Robust Expression Reconstruction Across 
Commercial Panels. A) Zephyr AI 220 gene list 
was compiled by intersecting commercial panels 
(upper panel). Boxplots of correlation per sample 
between real and reconstructed expression per 
sample (lower left panel) and per gene (lower 
right panel) of N=18,969 genes for each of the 
gene panels tested (N=5). B) Boxplots of number 
of mutations per sample for each cancer type. C) 
Same as (B) but limited to the 220 genes and 
hotspot mutations that are the input for our 
Zephyr AI reconstructions model. D) tSNE on 
GENIE reconstructed expression colored by 
genomic panel. E) and by cancer subtype F) and 
expression of key cancer genes 

Figure 1 | Reconstruction of patient tumor gene expression from minimal clinicogenomics data. Patient clinical features 
including cancer type diagnosis (OncoTree code), sex (Male or Female) and whether a tumor biopsy was sampled from a primary or 
metastatic site are used to derive sentence embedding vectors for input into a pre-trained biomedical language representation 
model designed for biomedical text mining tasks, called BioBERT. Corresponding one-hot encoded patient tumor hotspot mutations 
and high level copy number alterations (amplifications or homozygous deletions) for a set of n≈220 genes commonly profiled on 
multi-gene commercial next generation sequencing (NGS) panels were input into an adapted Principle Label Space Transformation 
(PLST) model, to reconstruct an mRNA transcriptome (n=18,969 genes) for a tumor sample. Reconstructed expression profiles can be 
applied to downstream analyses or mRNA-based clinical tasks, augmenting the utility of RWD cohorts.

Zephyr AI’s Reconstruction Model is Robust Across Diverse Commercial NGS Panels
The Zephyr AI 220 gene list was derived from the intersection of genes profiled across various commercial panels (Fig. 3A, 
upper). The performance of the reconstruction model was unaffected by choice of commercial NGS provider or assay (Fig. 3A, 
lower). Notably, while gene hotspot mutation detection varied significantly among commercial NGS providers in the AACR 
Project GENIE cohort (Fig. 3B), they are consistent for the 220 genes used for model input (Fig. 3C). A t-Distributed Stochastic 

Deriving PAM50 subtyping and other clinical features from reconstructed breast cancer 
expression profiles is comparable to real expression

To assess the clinical utility of reconstructed expression, we applied our 
method to 564 breast cancer samples (Fig. 4A), using only those features 
specified in Fig 1. We compared the predictive efficacy of reconstructed 
expression to true expression and mutations for four clinical 
classifications: stage, HER2 status, ER status, and PAM50 status2. 
Reconstructed expression performed comparably to true expression and 
outperformed DNA alterations alone in all tasks (Fig. 4B)

Figure 4 | Evaluating Clinical Utility of Zephyr AI's Reconstructed Expression 
Model in Breast Cancer. A) Workflow for assessing clinical utility of expression 
reconstruction model. B) Bar plots showing AUCs of classifiers predicting Stage, HER2 
Status, ER Status, and PAM50 subtypes (left to right), trained on real expression (teal), 
reconstructed expression (lavender) or mutations alone (maroon).

Deriving OncotypeDx Signatures from Reconstructed Colorectal Cancer Expression Profiles
Reconstructed expression profiles were generated for 272 colon adenocarcinoma tumors. OncotypeDx signatures3 were derived 
using genes from either real RNA sequencing or reconstructed profiles. Overall survival (OS) was compared between patients with 
high and low risk scores (RS) from real expression (Fig. 5A) and reconstructed expression (Fig. 5B). Real expression-based 
signatures showed a 12-month survival increase for low RS patients, while reconstructed expression-based signatures showed a 
27-month increase. While a high correlation (r = 0.65, p-value < 10-30) was observed between risk scores from real and 
reconstructed expression (Fig. 5C), discrepancies may contribute to improved survival outcomes in some patients. Indeed, gene 
set enrichment analysis revealed that high RS from reconstructed expression is associated with STK33 and BMI pathways, 
whereas high RS from real expression is linked to fatty acid metabolism and AKT/MTOR signaling (Fig. 5D).

Figure 5 | Derivation of OncotypeDx signatures from 
reconstructed colorectal cancer expression profiles. A) 
Kaplan-Meier plots depicting the OS outcomes of patients 
stratified into low and high-risk groups based on risk scores 
derived from real expression. B) Same as (A) but patients 
stratified into low and high-risk groups based on risk scores 
derived from reconstructed real expression. C) Scatter plot 
illustrating correlation between risk scores computed from 
reconstructed expression and real expression data (r=0.65, 
p-value < 10-30). Sample groups were categorized into two 
distinct groups based on risk scores (RS): samples with high RS 
solely derived from real expression data were denoted in light 
blue, those with high RS solely from reconstructed expression 
were indicated in purple, and the remaining samples were 
assigned to a default group represented by gray. D) Gene-set 
enrichment analysis (GSEA) results comparing the groups 
defined in (C).

Including clinical features significantly improved 
accuracy at sample and gene levels (Fig. 2B, P<10-10, 
effect sizes of 1.18 and 1.02, respectively). There was a 
strong positive correlation between reconstructed and 
true expression, especially for highly variable genes (Fig. 
2C, left panel, r=0.66, P<10-50), suggesting variability 
enhances model learning and prediction.

Neighbor Embedding (t-SNE) plot of 
reconstructed expression profiles shows 
the model output is robust across genomic 
inputs from various commercial NGS 
providers and assays, with no distinct 
clustering by assay type (Fig. 3D), while 
capturing salient clinical and biological 
features including cancer type (Fig. 3E) and 
expression patterns of key cancer genes 
(Fig. 3F).

The authors express their gratitude to the Zephyr AI science, 
engineering, data and business development teams for 
invaluable technical support and discussion. We also 
acknowledge the contributions of the authors and organizations 
cited, with special thanks to AACR Project GENIE, TCGA and the 
Cancer Dependency Map for essential data resources. We extend 
our appreciation to Candy Zhu and Jasmine Chu for their 
valuable assistance in designing this poster.

CONCLUSION
Our flexible analytic framework for reconstructing gene 
expression profiles from clinicogenomics data 
substantially augments the clinical utility and value of 
data acquired in real-world settings.


